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seems to be a new class o f  sensit ivi ty for  s tudy ing  
s t ructural  proper t ies .  

It shou ld  be m e n t i o n e d  tha t  a modi f i ca t ion  o f  the 
local  field fac tor  by the te rm q E o / E  in (5) is not  the 
only  way to improve  the descr ip t ion  of  AX in the 
crystals cons idered ,  but  it is the most  effective one.  
In a sys temat ic  way we have tested different poss ible  
inf luences on  AX. With  the use of  a modi f ied  local  
field fac tor  we ob t a ined  the highest  accuracy  with the 
smallest  n u m b e r  of  fit parameters .  

The presen t  results demons t r a t e  that  the aniso-  
t ropic  po la r izab i l i ty  o f  the bonds  is the or igin of  
opt ical  b i re f r ingence  An. In the crystals s tudied  here 
the ma in  con t r i bu t i on  to An stems f rom the cova len t  
bonds  C - O  and  S-O.  We observed  in a p re l imina ry  
s tudy a different  b e h a v i o u r  o f  crystals with the /3- 
K2SO4 structure.  In those  crystals the b i re f r ingence  
is even smal le r  than  in the a lka l ine  ear th  sulfates.  As 
a consequence  the in te rp re ta t ion  of  AX in terms of  
b o n d  polar izabi l i t ies  requires  s imu l t aneous ly  a 
critical cons ide ra t ion  of  s tructural  data.  Therefore ,  
with the excep t ion  of  Na2SO4, we exc luded  alkal i  
sulfates f rom the present  work. 
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Abstract 

A new asymmetric domain for intercrystalline mis- 
orientation is defined in the space of Euler angles for 
materials exhibiting cubic (Oh point-group) lattice 
symmetry. The invariant measure for this new domain 
is nearly constant; this is in significant contrast to the 
previous domain defined by MacKenzie [Biometrika 

(1958), 45, 229-240]. Distribution functions in the 
misorientation can now be represented with greater 
clarity and convenience in the new domain. A detailed 
theoretical analysis of special misorientations exhibit- 
ing multiplicities m>  1 is described. It is demon- 
strated that all such special misorientations fall upon 
the surfaces separating distinct asymmetric domains. 
This result convincingly proves that the derived asym- 
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metric domain is correct. The location of all possible 
coincidence site lattice boundaries for Z-<49 are 
identified in the asymmetric domain, and their charac- 
teristic multiplicities are given. 

I. Introduction 

Quantitative descriptions of the distribution of lattice 
misorientation associated with grain boundaries have 
been studied extensively i'n recent years. The mis- 
orientation distribution function (MDF), first pro- 
posed by Bunge (1982) and later fully implemented 
by Haessner, Pospiech & Sztwiertnia (1983) and Pos- 
piech, Sztwiertnia & Haessner (1986), describes the 
specific surface area of grain boundary associated 
with three parameters of misorientation. This function 
contains information which cannot be derived from 
consideration of the orientation distribution function 
(ODF). For example, Zhao, Adams & Morris (1988) 
introduced a theoretical basis for calculating the 
MDF from the ODF when perfect disorder is present 
among the constituent grain orientations. Com- 
parison of this theoretical MDF with the experimental 
one showed significant discrepancies which were 
attributed to orientation coherence effects. Adams 
(1986) and Zhao, Koontz & Adams (1988) extended 
the MDF concept to include not only misorientation, 
but physical orientation of the grain boundary plane 
in a probability density function called the intercrys- 
talline structure distribution function (ISDF). The 
ISDF contains all five geometrical parameters com- 
monly associated with grain boundary structure. It is 
held that these new structural functions have impor- 
tant applications in modeling properties associated 
primarily with grain boundary structure; examples of 
recent interest in the literature include creep cavita- 
tion (Don & Majumdar, 1986; Watanabe, 1983; Lim 
& Raj, 1984), intergranular fracture (Zhao & Adams, 
1986), grain growth and recrystallization (Harase, 
Shimizu, Kuroki, Nakayama, Wada & Watanabe, 
1986; Harase, Shimizu & Watanabe, 1986) and fatigue 
initiation (Neumann & Toennessen, 1987). 

The description of misorientation distributions in 
cubic materials has suffered from a serious problem 
of representation. When the axis-angle representation 
of misorientation is chosen, a serious nonlinearity 
exists in the asymmetric domain of representation. 
(The asymmetric domain is here defined to be the 
minimum compact subvolume in a space of the 
chosen misorientation parameters required to contain 
each physically distinct misorientation once and only 
once). MacKenzie (1958, 1964) derived a particular 
asymmetric domain of misorientation based on the 
requirement of a minimum absolute rotation angle. 
This domain is problematical, however, since the 
invariant measure associated with the axis-angle 
description contains a term in the square of the sine 
of the rotation angle which tends to zero as the 

rotation angle approaches zero. Consequently distri- 
bution functions defined over the domain of MacKen- 
zie tend to be ambiguous for small values of the 
rotation angle since the axis of rotation is no longer 
precisely defined. 

The other common method of representation for 
cubic materials, that of Euler angles, has been even 
more problematical since an asymmetric domain was 
not previously defined. Representations in the space 
of Euler angles have typically been given over a larger 
domain such that specific misorientations occur with 
non-uniform multiplicity. Such non-uniformity is par- 
ticularly troublesome in the interpretation of the dis- 
tribution function. 

In § 2 a new asymmetric domain for misorientation 
in cubic materials (Oh point-group symmetry) is 
derived in the space of Euler angles. An important 
advantage of the new domain is that the invariant 
measure associated with the space of Euler angles is 
nearly constant over its volume; the problems associ- 
ated with the axis-angle domain of MacKenzie are 
consequently eliminated. § 3 gives a rigorous treat- 
ment of multiplicity of misorientation in the space of 
Euler angles based upon certain group- and matrix- 
theoretical concepts. It is illustrated that all mis- 
orientations of multiplicity greater than 1 lie upon 
the boundaries of the new asymmetric domain as 
required. Finally, in § 4, a useful connection is con- 
structed between the coincidence-site-lattice (CSL) 
theory and the new domain. The locations of all CSL 
boundaries for Z-<49 are located in the domain. 
These developments provide a comprehensive basis 
for representing and interpreting misorientation dis- 
tributions in the space of Euler angles. 

2. Derivation of an asymmetric domain 

The derivation is principally concerned with inter- 
crystalline misorientations in cubic materials exhibit- 
ing Oh (m3m) point-group symmetry in the crystal 
lattice. We will include the center of symmetry of Oh 
at the outset by considering only misorientations of 
proper character (determinant of positive 1). With 
this restriction enforced in the beginning, further con- 
sideration of cubic crystal symmetry can be restricted 
to the elements of the O (432) point group. With 
reference to Fig. 1, consider lattice-fixed orthogonal 
coordinate systems KA and KB associated with grains 
A and B which join at a common boundary. The axes 
of KA and KB are parallel to (100) directions in the 
lattice. Misorientation g is defined to be the proper 
rotation which transforms the reference system KA 
into KB. Specifically, g is the 3 x 3 matrix of direction 
cosines connecting the two coordinate frames. With 
reference to Fig. 1, the ith row and j th column 
(i, j = 1, 2, 3) of rotation g, gi~, is 

gu = cos (X ~, X JA) ( 1 ) 
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where ( X ~ ,  XJA) denotes the angle between the jth 
coordinate axis associated with KA and the ith coor- 
dinate axis associated with KB. The misorientation g 
is given in terms of three consecutive right-handed 
rotations ~o~, 4,, ~o2 as defined in Fig. 1. ~ol is a rotation 
about X 3. 4' is a rotation about X~,  and the last 
rotation ~o2, is about the X 3 axis. The matrix elements 
of the misorientation rotation, gu, are 

gll = COS tpl COS ~p2-- sin ~1 sin ~2 COS 4,, 

g12 = sin ~Pl c o s  (~2-~- c o s  ~l sin ~2 cos 4,, 

g~3 = sin ~2  sin 4,, 

g21 = --COS ~1 sin ~ 2 -  sin tp~ c o s  ~2  c o s  4,, 

g22 = - s in  ~ sin ¢2 + cos ~t) 1 COS ~2  COS ~ ,  (2) 

g23 = COS q92 sin 4,, 

g31 = sin ~o~ sin 4,, 

g32---- - -COS ~1 s i n  4,, 

g33 = COS 4,. 

Table 1. The 25 possible symmetry elements of the 
0 group 

Symbo l  

E 

2 Lo21o 

3 L~01 

2 
4 Llo o 

3 
5 Lit t 

6 L~ri 

We shall subsequently use the notation g = (~)1,  t~), ~)2) 
to represent misorientation in compact form. 7 L~ i 

Misorientations can be thought of in terms of an 
abstract space in Euler angles. The triplet of values 
(~o~, 4,, q~2) defines a point in this three-dimensional 8 L~, 
space spanned by three axes representing the con- 
tinuous variation in the Euler angles, ~ol, 4> and ~o2. 
In the absence of crystal symmetry (beyond the center 9 L~i i 
of symmetry), an asymmetric subvolume defined by 

10 L~l i 

11 L~t I 

/ 

X 3 

x~ 

," A 

Fig. 1. Euler angles ~o~, ~b, ~o2, which rotate crystal frame A into 
crystal frame B. 

12 L3h 

Matrix Symbol Matrix 
1 0 0  0 0 - 1  

0 1 0  13 L~o i 0 - 1 0  

0 0 !  - 1 0 0  

- 1 0 0  0 0 1  

0 1 0  14 L~o I 0 - 1 0  

0 0 - 1  1 0 0  

- 1 0 0  0 0 1  

0 - 1 0  15 L~i o 0 1 0  

0 0 1  - 1 0 0  

1 0 0  0 0 - 1  

0 - 1 0  16 ~ l o  0 1 0  

0 0 - 1  1 0 0  

0 1 0  - 1 0 0  

0 0 1  17 L~ i 0 0 - 1  

1 0 0  0 - 1 0  

0 - 1 0  1 0 0  

0 0 1  18 Lio o4 0 0 - 1  

- 1 0 0  0 1 0  

0 - 1 0  1 0 0  
4 0 0 - 1  19 L1o o 0 0 1  

1 0 0  0 - 1 0  

0 1 0  - 1 0 0  

0 0 - 1  20 L ~  0 0 1  

- 1 0 0  0 1 0  

0 0 1  0 - 1 0  

1 0 0  21 L~l o - 1 0 0  

0 1 0  0 0 - 1  

0 0 - 1  0 1 0  

1 0 0  22 L~o I - 1 0 0  

0 - 1 0  0 0 1  

0 0 - 1  0 1 0  

- 1 0 0  23 L~1 o 1 0 0  

0 1 0  0 0 - 1  

0 0 1  0 - 1 0  

- 1 0 0  24 L~o i 1 0 0  

0 - 1 0  0 0 1  

the relations 0-< ~ol---27r, 0<_ 4,<_ rr, and 0 -  < ~o2<-27r 
confines all physically distinct misorientations. When 
crystal symmetry is present additional constraints are 
prescribed which further limit the size of the asym- 
metric domain. Here we use the notation of Pospiech, 
Gnatek & Fichtner (1974) and Hansen, Pospiech & 
Lucke (1978) for the elements of the crystal point 
group. Let Lt"~vw 3 represent the matrix for an n-fold 
rotation of the crystal coordinate frame about the 
[ uvw] crystal direction. All such elements are restric- 
ted to be members of the O (432) crystal point group 
which contains 24 members. (Table 1 lists the ele- 
ments of the O group.) Crystal symmetry associated 
with grain A requires that misorientation g '=  gLt~vw 3 
is physically indistinguishable from g when Lt~w q 
O. Crystal symmetry associated with grain B requires 
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that the misorientation g"=  Lt%,]g is indistinguish- 
able from g when Lt'~s o e O. It follows that the general 
condition for equivalency is given by 

g e : Lt%,lgLt~owl, (3) 

where Liras,l, L[~vw] e 0, and therefore ge is equivalent 
to g. 

Pospiech et al. (1974) have given a complete analy- 
sis of 'lower' or 'non-cubic' symmetry groups and the 
consequent reductions in the asymmetric domain in 
Euler space. Here we will just briefly indicate that 
careful consideration of the equivalency relationships 

g*= EgL~ooll L~oollgE = L ~ l  2 = 10]gL[0ol ] (4) 

permits the asymmetric domain to be reduced to the 
subvolume defined by the relations 0 <- 91 -< ¢r/2, 0-< 
~b---¢r/2, and 0 <- 92 -< 7r/2. Consideration of the 
threefold rotations 3 Lt,vw] introduces nonlinear 
relationships which further constrain the necessary 
size of the asymmetric domain. These are now con- 
sidered in detail. 

Consider the effect of twofold rotations about (110) 
axes on both coordinate systems: 

ge 2 2 = Ltho]gL[110]. (5) 

This equivalence requires that 

(91, (~, 92)e = ('n'/2--91, ~, 7r/2-- 92). (6) 

We shall require our distribution function to be 
invariant with respect to the interchange of the two 
crystallites (KA-->Ks, Ks-->KA). Formally this 
requires that ge=g- l=gr  (since g is unitary 
orthogonal), or 

(91, t~, 92)em(Tr- -92 ,  t~, 7r--91 ). (7) 

As a consequence of the equivalence of misorienta- 
tion under the right- and left-hand operations of 
fourfold rotation elements, 4 L[ ,,,w], 

(91,cb, 92)'=(91+n¢r/2,6,92+mcr/2), (8) 

where n and m are positive and negative integers. 
Combining (8) with (7) for n = m = - 1 ,  we require 

(91, ~, 92)e = ( 'n'/2-- 92, ~b, 7 r / 2 -  91). (9) 

Further, combining (6) and (9), we require 

(91, ¢~, 92)e =-- (92, ¢~, 91). (10) 

Equivalences (9) and (10) define two mirror planes, 
as illustrated in Fig. 2. A reduced asymmetric region 
can be selected, as shown by the shading in Fig. 2, 
by the relations 

0-< 91-< 92<- ~r/2, 0--- 4~--- 7r/2, 

91 + 92 -< I7"/2. (11) 

Next, consider the actions of threefold rotation 
elements, 3 L[,owl, on KA and Ks. The right-hand 

operation of such elements switches columns in the 
misorientation matrix g. The left-hand operation of 
threefold rotation elements switches rows in g. The 
combined effect is the possibility of switching any 
element of matrix g to any other position in the 
matrix. In combination with other twofold and four- 
fold symmetry elements, not only can the position be 
arbitrarily changed, but also the sign. 

We shall require that ~b be maximized in the range 
0-< ~b -< 7r/2. This is equivalent to minimizing cos ~b 
over this range. Since g33 = COS t~, and as a con- 
sequence of the position and sign-switching proper- 
ties asociated with the threefold symmetry elements, 
we must require that g33 = COS t~ be less than (or equal 
to) the positive value of every other element of g. 
Since the sine and cosine of every possible angle in 
the reduced domain of Fig. 2 are positive, this requires 
that 

cos ~b -< Icos 9, cos 92 - s in  9, sin 92 cos ~bl = Ig,,I, 
(12) 

cos ~b -< I-sin 91 sin 92 + cos ~Pl COS ~0 2 COS ~1 = [g22[, 

(13) 

cos ~b <-sin 9, cos 92+ cos 91 sin 92 cos ~b = g12, 
(14) 

cos 4~ <-cos 91 sin 9 2 +  s i n  91 COS 92 COS (~ ~-"--g21, 
(15) 

cos ~b -< sin 91 sin $ = g31,  (16) 

cos ~b ~ cos qh sin ~b = - g 3 2 ,  (17) 

cos ~b -< sin 92 sin ~b = gl3, (18) 
cos ~b -< cos 92 sin ~b = g23. (19) 

For angles satisfying the inequalities of (11) (shaded 
region in Fig. 2), (12) is equivalent to 

cos ~b-< cos ~, cos 92/(1 + sin ~, sin 92), (20) 

~2 

~2 

0 ~2 
¢Pl 

Fig. 2. Two mirror planes introduced by crystal symmetry and the 
inverse property. The symbol ge denotes the physically 
equivalent misorientation of g. 
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and (13) is equivalent to 

cos 4,-< sin 9t sin 92/(1 + COS 91 COS 92). (21) 

However, since 0-<(91+92)-< ~r/2, sin 9~ sin 9 2 -  
cos 91 cos 92; also the inequality (21) is more restric- 
tive than (20). As a consequence it will only be 
necessary to consider (21). The inequality (14) is 
equivalent to 

cos 4,-< sin 9~ cos 92/(1 - c o s  9 1  sin 92), (22) 

and (15) is equivalent to 

cos 4,-< cos 91 sin 92/(1 - s i n  91 cos 92). (23) 

Since 9~ -< ~-/4, sin 9~ -< cos 9~ and 1 + cos 9~ cos 92 -> 
1 - s i n  9~ cos 92, the inequality (23) is included in 
(21). Because 9] < - 7r/4, 0 -  91 < - 92 < - , r /2  and (9~+ 
92)-< 7r/2, relations (17), (18) and (19) are included 
in (16) which can be rewritten as 

cos 4, - sin 91/(1 + sin 2 9~) 1/2. (24) 

Relation (24) is not as restrictive as (21) and can 
be included in it. To see this, note that 1/sin 92 + 
sin 9t -> 1+s in  E 91 > (1 +s in  2 9~) t/2 and therefore 
sin 9 t / (1 / s in  92+ sin 9~)-< sin 91/(1 +sin E 91) 1/2. 

Consequently 

sin 91 sin 92/(1 +sin  9~ sin 92) 

- s i n  91/(1 + s i n  2 91) 1/2. (25) 

Since sin 91 sin 92 -< cos 9~ cos 92 it is clear that 

sin 9~ sin 92/(1 +cos  9i cos 92) 

-< sin 9~/(1 + s i n  2 91) 1/2, (26) 

which means that the inequality (24) is included in 
(21). 

To summarize the results to this point, we have 
shown that the asymmetric region is bounded by the 
inequalities of (11), (21) and (22). To complete the 
derivation we will now demonstrate that (22) is con- 
tained within (21). This is immediately obvious when 
9 2 - 7 r / 4 .  For 92 > - , r /4  and arbitrary choices of 91 
and 92 satisfying relation (11) we must show that 

sin 91 cos 92 sin 91 sin 92 
-> (27) 

1 -  cos 91sin 92 l + cos 91cos 92 

Rearrangement of this relation leads to the equivalent 
expression 

cos 9~ >-x/2 sin ( - 7 r / 4 +  92). (28) 

Since 92-> 7 r / 4 -  9~ and 91 + 92 ~ 7r/2, let us rewrite 
92 as 92 = Of + 7r/4 where 0-< a -< zr/4. Then 9, <- 
7 r / 4 -  a and cos 91 >- cos ( 7 r / 4 -  a)  = sin (7r /4+ er). 
The inequality (28) is contained within the relation 

sin (7r /4+ a)->v/2 sin a, (29) 

which is equivalent to the relation cos (7r /4+ a)>_ 0, 
and therefore (29) is true when 0 <- c~-7r /4 .  From 

the above we conclude that the asymmetric domain 
for misorientation in the space of Euler angles is 
bounded by the relations 

0-<cos 4 , - s i n  91 sin 92 / (1+cos  91 cos 92) (30) 

and 

0<- 91-< 92-< 7r/2, 4, -> 0, 91 + 92<- ,r/2. (31) 

This is depicted graphically in Fig. 3. 
The subvolume of the asymmetric domain is 

required to be equal to 87r2/1152 = 7rE/144 (MacKen- 
zie, 1964). It is immediately confirmed that this 
volume is 

d~d92 d91 7r2/144, 
0 ~o I 0 

(32) 

where ~" = cos 4,. 

3. Multiplicity of misorientation in 
the space of Euler angles 

It is a property of the asymmetric domain that every 
interior point of the asymmetric subvolume represents 
a physically distinct misorientation. A consequence 
of symmetry is that every interior point g will map 
to 1151 other equivalent points, each one residing in 
another equivalent asymmetric domain. It is possible 
to define all of these domains mathematically, but 
the process is tedious and has not been undertaken 
by the authors. The boundaries separating these asym- 
metric subvolumes contain points of two types. The 
first type consists of misorientation points which 
always map to other points also lying on the separat- 
ing surfaces; these points must never map into the 
interior under the combined action of symmetry ele- 
ments. Boundary misorientations of this first type 

cosO= 
simp 1 sin~ 2 

(1 + cosko 1 cos~2 ) 

o 

/ 

~/2 

~/2 

I , 

E/_~.._~.2~./\i 

~I = ~2 

Fig. 3. The asymmetric region defined by the subvolume ABCD. 
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map to 1151 other boundary points under the action 
of the symmetry elements. The second type of boun- 
dary misorientation has a special property, called 
multiplicity, such that it maps back upon itself under 
specified combinations of the symmetry elements. 
Thus if m is the multiplicity number, such points 
occur not 1152 times in Euler space, but 1152/m 
times. Misorientations of this type must always be on 
the boundaries separating asymmetric subvolumes. 
Demonstration that all such points lie on the surfaces 
of the asymmetric domain given in (30) and (31) is 
convincing confirmation of its correctness. 

To this end we shall classify all possible misorienta- 
tions in Euler space which exhibit multiplicity under 
the combined right- and left-handed action of ele- 
ments of the O crystal point group on KA and KB. 
It is then demonstrated that all such special mis- 
orientations are found upon the defined surfaces of 
the chosen asymmetric subvolume. The reader may 
not be familiar with theoretical aspects of the group 
theory. The book by Hamermesh (1964) is recommen- 
ded if assistance is required. We shall adopt an 
abbreviated notation for the elements of the O group; 
let Li, i = 1, 2 , . . . ,  24 represent any one of the 24 
elements of the O group listed in Table 1. Further, 
define L 0 to be the left- and fight-hand pair of sym- 
metry elements (L ,  Lj) operating on misorientation 
g such that ge = LigLj = Log. In the discussion which 
follows it will be necessary also to consider the 
equivalence of g with respect to interchange of KA 
and Ks; initially, however, only 576 symmetry 
operations are considered. 

Formally, the multiplicity number m is defined as 
the number of distinct pairs of symmetry elements L 0 
which can be found such that 

g= Lug (33) 

for a particular chosen g. 
We now set forth five theorems, and a sketch of 

their proofs, which are necessary for the classification 
of misorientations satisfying the multiplicity relation 
(33). 

3.1. Derivation of  fundamental theorems 

Theorem 1. All of the operators L o satisfying the 
relationship Log =g form a group Qg. 

Proof of  theorem 1. 
(1) The elements L~ and Lj belong to the O point- 

symmetry group; consequently there exist only 576 
possible elements L 0 which can be formed. Consider 
the set Q = {L0} such that every element of the set 
satisfies the relationship Log =g. 

(2) If Lrs and L,,, ~ Q then LrsL,,,g = L~g = g. 
Therefore the set Q is closed under the operation 
LrsL,u. 

(3) The consecutive operation of elements L o s Q 
is associative. That is, if Lr~, Lt. and L 0 ~ Q, then 
(L,~L,,,) L,j = Lrs ( Lt,,L o ). 

(4) The set Q must contain the identity element 
L0 = (E, E). 

(5) The set Q will contain, for every L o ~ Q, the 
inverse of L 0. Since Log = L~gLj =g it follows that 
LT, lgL f l=g .  Since Li, Lj, L7, l and L f ~  O, L~ 1= 
(LT, ~, L f ' )  ~ Q. 

(6) It follows from (2), (3), (4) and (5) that set Q 
is a group, hereafter referred to as Qg to suggest that, 
for each misorientation g exhibiting multiplicity m > 
1, there will in general exist a different group Qg. The 
order of group Qs will be the multiplicity, m, associ- 
ated with misorientation g. 

Theorem 2. If L o ~ Qg then elements L~ and Lj 
forming L 0 must have the same set of eigenvalues. 

Proof of  theorem 2. 
If Lj ~ Qg then L~ = gLf lg  -~. It follows that L~ and 

Li  I are similar matrices and therefore must have the 
same set of eigenvalues. 

(2) Every element of the O group can be classified 
according to its eigenvalues. (Associated with the 
eigenvalues 1, 1, 1 is the identity element E. Associ- 
ated with the eigenvalues - 1, - 1, 1 are all of the nine 
twofold rotation elements of the form L21o and 2 tl0o. 
Associated with the eigenvalues 1, i, - i  are the six 
fourfold rotation elements. And associated with the 
eigenvalues 1, _ 1 +  ix/~, -½-i~23- are the eight three- 
fold rotation elements.) Thus elements of the same 
order of rotation have the same eigenvalues. 

(3) The inverse of Lj, Lf 1, has the same order as 
Lj and therefore the same eigenvalues. This can be 
proven as follows: Let n be the order of Is. By 
definition L~' = E. Multiply both sides of this equation 
by (/_.7) -1= (Lf l )  n to form E = (L f l )  ". Therefore the 
order of L7 is equal to that of Lj. 

One important consequence of theorem 2 is in 
limiting the number of pairs (L ,  Lj) which must be 
considered in forming group Qg. Elements of the form 
(L,",,w, L~,) are prohibited for n # m. In other words, 
the order of L o must be equivalent to the order of 
the elements Li and Lj from which it is formed. Only 
orders 1, 2, 3 and 4 are possible. Another consequence 
of theorem 2 derives from consideration of Lagrange's 
theorem (Hamermesh, 1964). The order of any ele- 
ment of the finite group Qg must be a divisor of the 
order of Qg. Therefore the order of Qg canno t  be 5, 
7, 11, 13 etc. 

Theorem 3. The maximum possible order of Qg is 
24. 

P r ~ f  of  theorem 3. 
(1) Assume that g exists such that Log =g. From 

the definition of L o this implies that for specified Lj 
there exists a unique Li given by Li = gLf lg  -1. 

(2) Since Lj ~ O there exist only 24 possible ele- 
ments Lj. Consequently a maximum of 24 elements 
L 0 can exist for any group Qg. Thus the order of Qg 
is ---24. 
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Theorem 4. If the misorientat ion g is known 
such that LigLj =g ,  and Lk, L,, ~ 0 have the same 
order as Li and Lj, and if the axis of rotation 
of Lk is or thogonal  to the axis of L~ and, likewise, 
if the axis of  rotation of L,, is orthogonal  to that of 
Lj, then the matrix form of g'  is known such that 
Lkg'Lm = g'. 

Proof of  theorem 4. 
(1) If L~ and Lk are of the same order,  and the 

respective axes of  their rotations are or thogonal  then 
there exists L h E O such that L~ = LhLkLhl. (This can 
easily be unders tood,  geometrically,  as Lh ~ rotates 
the current coordinate system to a new posit ion such 
that the rotat ion axis associated with L~ becomes the 
rotation axis of Lk, and t h rotates the coordinate  
system back again after rotation Lk is performed.  All 
required rotations of  this sort are included in the O 
point  group•) 

(2) If L, = LhLkLh I and L~ = LpL,,Lp 1, then 
LhLkLh~ gLpL,,Lp~ = g, or Lk( Lh~ gLp)L,, = Lh~ gLp. 
Thus g'  has the form of LhlgLv. (Clearly, the exact 
misorientat ion,  g', which satisfies the relat ionship 
Lkg'L,,,--g' is not unique,  but the form of g'  is 
unique.) 

The importance  of theorem 4 is now explained. 
Note that all physically equivalent orientations ge= 
LigL~ must have identical multiplicities, m. Consider  
the cyclic group A formed from a part icular  generator  
L~j. Suppose that  g is known such that Log = g. All 
elements of  the group A satisfy the same relationship• 
Suppose that  we consider another  cyclic group B of 
the same order  as A such that the axes of  rotation 
associated with elements of  B are orthogonal  on the 
left hand and the fight hand  to the axes of  rotation 
for elements of A. From theorem 5 g' is known to be 
physically equivalent  to g where g' satisfies the rela- 
tion L~g '=g '  and LIj~B. It is therefore only 
necessary to find one misorientation g satisfying the 
relation Log =g  for a single element L o ~ A to treat 
comprehensively all elements of all possible cyclic 
groups of  the same order,  so long as the axes of 
rotation are orthogonal.  

Theorem 5. For a group Qg, if L o ~ Qg, then Qg 
contains the cyclic group {L~ln is an integer}• 

Proof of  theorem 5. This theorem is fundamenta l  
to group theory, and is proven in all elementary texts 
on the subject (Fraleigh, 1982). 

A detailed study of the O group and the groups 
Qg which can be formed from elements of  the O 
group reveals that there are seven types of cyclic 
groups which mut be considered• These cyclic groups 
are generated from elements of the type (E, E) ,  

2 2 "~ (L~oo, L020,), (L3,1, L3,1), (L2~o, L,,o), (L,oo, Lho), 
(L~lo, 2 4 L~oo) and (L~oo, L4oo). In combinat ion with 
theorem 4, it is now clear that these seven distinct 
elements identify all possible misorientat ions g 
associated with all possible cyclic groups• 

3.2• Detailed consideration of  the multiplicity relations 

We now consider the form of misorientat ion g 
required to satisfy the multiplicity relat ionship (33) 
for each of  the seven types of cyclic groups previously 
identified. 

From the generator  L o = ( E, E) all misorientat ions 
satisfy the multiplicity relation; thus no constraint  is 
imposed• 

L,oo) or = (L~oo, the For the generator  of type L 0 2 2 
4 = (LToo, L4oo) it is required that g have generator L o 

the form 0 0) 
g = cos to sin to , (34) 

- s i n  to cos to 

where to is variable• The multiplicity of  these 
misorientat ions is 4. The form of misorientat ion 
associated with this group is interpreted to be due to 
rotations around the (100) axes. 

For the generator  L o = (L2~o, L~lo), it is required 

g =  

that 

l + c o s t o  1 - c o s t o  1 
2 2 v~ sin to 

1 - c o s t o  l + c o s t o  1 
x/2 sin to 

2 2 

1 1 
sin to - ~  sin to C O S  t o  

(35) 

Here the multiplicity is 2. This form of misorientat ion 
can be interpreted to derive from rotations around 
(110) axes• 

L ~ ,  Liii)  , g must be When L 0 = ( 3 3 

3 ( l _ c o s  w ) _ ~  sin 3(2 cos to+ 1) (1 - cos ~,) + ~,~ sin w v ,.' 

1 1 I 1 
3 (2 cos w + I ) sin . g =  ( I - c o s  w ) - ~  sin to 3 ( I -  cos t o ) + - ~  

1 1 I 1 
( l - c o s t o ) + ~ s i n t o  3 ( I - c o s w ) - - - - ~ s i n t o  -(23 . . . .  * 1 )  

(36) 

Misorientat ions of this type have multiplicity of  3. 
Such misorientat ions have the form associated with 
rotations about  (111) axes• 

= L~1o, L~oo), g must have the form For L 0 ( 2 2 

g =  

- s i n  to cos to 0 

1 1 1 
cos to ~ s i n t o  

- 1  1 1 
~ c o s t o  - ~ s i n t o  H 

(37) 

The multiplicity here is 2. 
Note that  if LigLj=g then Lf l2g- lLf l= g-i  and 

• 2 - i  2 2 - I  
Lioo = Llo0 since L~o = Lllo and it follows that 

= (L~oo, L~lo) the form o f g  must be the inverse for L o 2 2 
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(transpose) of (37): 

/ -s in to 

g = cos to 

0 

1 - 1  
cos to ~ c o s t o  

1 - 1  
sinto ~ s i n t o  

1 1 

4~ 4~ 

(38) 

Again the multiplicity is 2. Misorientations of the 
form given in (37) and (38) cannot be interpreted 
simply in terms of a unique type of rotation axis. 

It is clear that for every order of cyclic group only 
one adjustable variable, to, remains. Since by theorem 
5 for any g the group Qg must include as a minimum 
the cyclic subgroups which can be formed from its 
elements, it follows that Qg must contain the restric- 
tions placed upon these cyclic subgroups as a minimal 
constraint. If the order of Qg is greater than the 
maximum order of its cyclic subgroups then further 
constraints on g are required. However, since only 
one adjustable variable remains, these further con- 
straints must operate solely upon the variable to. In 
other words, the form of the misorientation g defined 
by the constraint equations (34) through (38) can be 
subject to further constraint (higher multiplicity) for 
specific choices of to. It is therefore not necessary to 
consider all possible groups Qg, but rather only the 
further constraints which can be imposed upon the 
variable to in (34) through (38) to increase the multi- 
plicity of g. 

The constraints in (34)-(38) are curved lines in the 
space of Euler angles• These lines have been identified 
to lie upon the surface of the asymmetric domain 
derived in the previous section. These lines are shown 
in Fig. 3. The points in Fig. 3 are identified in terms 
of their Euler angles, (~1,4', ~P2), as follows: A =  
(7r/4, arc cos ½, 7r/4), B = (~'/4, 7r/2, 7r/4), C = 
(0, 7r/2, 0), D = ( 0 ,  ~-/2, ~'/2), E = ( 0 ,  7r/2, 7r/4). 
The line associated with multiplicity of 4 [(34)] is the 
straight-line segment CD. Associated with (35) is the 
straight-line segment AB and the curved-line segment 
AC. Equation (36) is associated with multiplicity 3 
and the curved-line segment AD. Equation (37), 
associated with a multiplicity of 2, is represented by 
the straight-line segment BE. Equation (38) is found 
to be equivalent to (37) when the misorientation 
inverse property of (7) is invoked. Clearly, all possible 
points of multiplicity m >  1 are located on the 
boundary of the defined asymmetric domain. 

Theorem 3 requires that the maximum order of Qg 
is 24. There are 24 possible misorientations g with 
multiplicity of 24. These are given by g = Lj where 
Lje O. It is clear that for Lr and Ls e O, ge = LrgLs., 
but for g = Lj the product LrgLs = Lt can only be one 
of the 24 elements in the O group. Thus the multi- 

plicity is 24. Points of this character are points C and 
D in Fig. 3. 

A misorientation which has multiplicity of 6 must 
be associated with a group Qg which contains cyclic 
subgroups of order 2 and 3. This is a consequence of 
Lagrange's theorem (Hamermesh, 1964) and theorem 
5. Point A in Fig. 3 will have a multiplicity of 6 and 
is formed by the intersection of lines associated with 
multiplicities of 2 [(35)] and 3 [(36)]. This misorienta- 
tion is of the type 

g =  _1 ~ 23 . (39) 

A misorientation which has multiplicity of 8 has 
been found to contain the cyclic subgroups associated 
with order 2 and order 4 at the intersection point E. 
This misorientation is of the type 

/ 1 0 0/ 
g 0 4~ 4~ 

= 2 2 • (40) 

0 -x/2 __ 
2 

Point B is associated with multiplicity of 4 since 
it is formed from the intersection of AB and BE 
which each have multiplicity of 2. This misorientation 
is of the type 

g= 

1 1 x / 2 \  

_! _! 
2 2 

2 2 

(41) 

3.3. Additional multiplicity due to the inverse property 

To this point we have described the multiplicity 
occurring in specified misorientations due to right- 
and left-handed symmetry elements selected from the 
O point-symmetry group only. Additional multi- 
plicity arises from the misorientation inverse property 
given in (7). In the previous section the equivalence 
of misorientations given in (37) and (38) was noted, 
and attributed to the inverse property. Additional 
consequences are now described. 

First consider the plane ¢1 = ¢2 which is plane A B C  
in Fig. 3. All misorientations located upon this plane 
have Euler angles of the form g = (¢, 4', ¢). From (7) 
the inverse of such misorientations has the form g-I = 
(z r - e ,  4', 7 r - ¢ ) .  This inverse point is physically 
equivalent to g under the action of symmetry elements 
selected from the O point group: 

L2 - 1-2 olog Lolo= g. (42) 
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E u l e r  a n g l e s  
,~ m 91 ~b 

3 12 45.00 70.53 
5 8 0.00 90.00 
7 6 26.56 73.40 
9 4 26.56 83.62 

11 4 33.68 79.53 
13a 8 0.00 90.00 
13b 6 18.43 76-66 
15 2 19-65 82.33 
17a 8 0.00 90.00 
17b 4 45.00 86.63 
19a 4 18.44 86.98 
19b 6 33-69 71.59 
21a 6 14.03 79.02 
21b 2 22-83 79.02 
23 1 15-25 82.51 
25a 8 0.00 90.00 
25b 6 36.87 90.00 
27a 4 21-80 85.75 
27b 1 15.07 85.75 
29a 8 0-00 90.00 
29b 6 33.69 84.06 
31a 2 27-41 78.84 
31b 6 11-31 80.72 

Table 2. CSL boundaries for ~, <-49 (m is the multiplicity) 

Axis  a n g l e  E u l e r  ang l e s  Ax i s  a n g l e  
tp2 (h, k, l) to 2, m tpt ~b ~P2 (h, k, l) to 

45-00 1, 1, 1 60.00 33a 2 12.34 83.04 58-73 3,1, 1 33.56 
36.86 1,0, 0 36.86 33b 4 37-51 76-84 37-51 1, 1,0 56-99 
63-44 1, 1, 1 38.21 35a 1 16-86 80.13 60.46 2, 1,1 34-05 
26-56 1, 1, 0 38.94 35b 6 30"96 88.36 59.04 3, 3, 1 43.23 
33.68 1, 1, 0 50.47 37a 8 0.00 90-00 18.92 1,0, 0 18.92 
22.62 1,0,0 67.38 37b 1 12.53 85.35 40.60 3, 1,0 43.14 
71.57 1, 1, 1 27.79 37c 6 36.87 71.08 53.13 1, 1, 1 50.57 
42-27 2, 1,0 48.19 39a 6 21.80 75.14 68-20 1, 1, 1 32.20 
28.07 1,0,0 61"93 39b 1 29"20 87.06 48.12 3,2, 1 50.13 
45.00 1, 1, 0 86"63 41a 8 0"00 90"00 17.68 1,0, 0 17.68 
18.44 1, 1, 0 26"53 41b 2 17.10 84.40 36.03 2, 1, 0 40.88 
56.31 1, 1, 1 73.17 41c 4 36.77 77.32 36"87 1, 1, 0 55.88 
75.97 1, 1, 1 21.78 43a 6 9.46 81-98 80-54 1, 1, 1 15.18 
50.91 2, 1, 1 44.41 43b 2 12.10 87.33 24.78 2, 1,0 27-91 
52-13 3, 1, 1 40.45 43c 4 45.00 80.63 45.00 3, 3, 2 60.77 
16.26 1, 0, 0 16.26 45a 2 10.30 83.62 63-44 3, 1, 1 28-62 
53.13 3, 3, I 51.68 45b 6 26.57 83.62 63.43 2, 2, 1 36-87 
21.80 1, I, 0 31.59 45c 6 38.66 84.90 51.34 2, 2, 1 53" 13 
31.33 2, 1,0 35.43 47a 6 26.56 87-56 63-44 3, 3, 1 37-07 
43.60 1,0, 0 43.60 47b 1 22.71 82.67 35.39 3, 2, 0 43.66 
56.31 2, 2, 1 46.40 49a 6 30.96 72.17 59-04 1, 1, 1 43.57 
43.66 3, 2, 0 54.50 49b 1 10.62 85.32 47.49 5, i ,  1 43.57 
78.69 1, 1, 1 17.90 49c 2 30.35 75.82 49.27 3, 2, 2 49.23 

It follows that every point on plane ABC has an 
additional multiplicity of 2. 

Next, consider misorientations on the plane A B D  
in Fig. 3. All such points are of the form g =  
(9, ~b, 7 r / 2 - 9 ) .  The inverse property requires that 
g-~ = (¢ + ~-/2, ~b, rr - ¢). This inverse point is physi- 
cally equivalent to point g under the following combi- 
nation of symmetry operations taken from the O 
group: 

4 - Lo0ig IL~0T g. (43) 

Thus every point on plane A B D  increases its multi- 
plicity by a factor of 2. 

For line CD in Fig. 3 all misorientations have the 
form g = (0, rr/2, ~2) and the equivalent inverse mis- 
orientations must have the form g-  ~ = 
(7r-~2,  7r/2, rr). Again, g-~ can be shown to be 
equivalent to g under 

L4oog -' L/oo = g. (44) 

The multiplicity of any points on line CD must, 
consequently, increase by a factor of two. Point E 
lying on line CD increases in multiplicity from 8 to 
16 as a consequence. 

With the exception of misorientation points in com- 
mon with intersecting planes, the multiplicity of 
points in plane BCD is not altered by the inverse 
property. As for points on the curved surface ACD, 
it is difficult to prove that there do not exist specific 
points which are affected by the inverse property, but 
no general effect occurs except at the intersection 
with planes ABC and ABD. Points A, B, C and D 

increase in multiplicity by a factor of 2 due to the 
inverse property. 

4. CSL boundaries in the asymmetric domain 

The coincidence site lattice (CSL) theory (Bollmann, 
1970; Brandon, 1966) is frequently considered to 
provide a basis for "specialness' in grain boundary 
properties. Coincidence refers to certain special mis- 
orientations between two crystal lattices which form 
a coincidence superlattice when their lattice points 
are permitted to interpenetrate each other. The par- 
ameter ~ is inversely related to the fraction of lattice 
sites which are coincident between these two inter- 
penetrating lattices. In adjacent grains of special mis- 
orientation and low 2 number it is possible to form 
a grain boundary exhibiting a high degree of atomic 
congruence and consequently low energy and 
improved resistance to intercrystalline fracture. Some 
evidence supporting this point of view has been repor- 
ted in recent literature (Don & Majumdar, 1986; 
Watanabe, 1983; Lim & Raj, 1984; Zhao & Adams, 
1986). In the interest of completeness this section will 
relate these special CSL boundaries to the asymmetric 
domain in the space of Euler angles. 

For 2 <-49 the complete list of CSL boundaries 
given by Grimmer, Bollmann & Warrington (1974) 
has been converted from axis-angle pairs to the triplet 
of Euler angles (9~, ~b, 92) in the asymmetric sub- 
volume using the equations provided by Bunge (1982) 
[his equations (2.50) and (2.62)]. This listing is given 
in Table 2 and all the CSL boundaries are carefully 
located in Fig. 4. It has been noted that all the CSL 
boundaries lie on the surface of the asymmetric sub- 
volume except ,~39b. 
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5. Summary and discussion 

A comprehensive derivation for a new asymmetric 
domain for intercrystalline misorientation in cubic 
materials has been presented in § 2. This new domain 
is represented in the space of Euler angles, and 
exhibits significant advantages over the previous 
domain defined by MacKenzie (1958, 1964) using the 
axis-angle parameters. The chief advantage is that the 
invariant measure associated with random distribu- 
tions of misorientation is nearly constant. [The range 
of variation for the invariant measure in the new 
domain is 0.943-<sin 4' -< 1.000, in contrast to the 
variation in MacKenzie 's  domain which is 0 -  
sin O sin E (to/2) <_0.271.] For small values of the 
rotation angle in MacKenzie's domain serious 
ambiguity exists in the rotation axis. This problem is 
not present in the new domain defined by this paper. 
A further advantage is the simplicity of definition 
possible for the new domain in the space of Euler 
angles. This is typified by the definition given in (30) 
and (31). Finally, the new domain is the first to be 
discovered in the space of Euler angles. Whereas 
previous descriptions of distribution functions were 
given over multiples of the asymmetric domain, the 
new domain will significantly reduce the computation 
time required to represent such functions, and sig- 
nificantly increase the clarity of their representation. 

In § 3 a detailed group-theoretical treatment of the 
problem of multiplicity has been presented. It was 
shown that all possible misorientations exhibiting 
multiplicities of m > 1 can be classified into a finite 
number of  types. These types were shown to exist 
only on the surface of the asymmetric domain. Their 
multiplicities were shown to be 2, 4, 6, 8, 12, 16 and 
48 when the inverse property of (7) was included. 
With respect to the asymmetric domain, all possible 
misorientations exhibiting multiplicities of m >  1 
have been identified in Fig. 3. This problem of multi- 
plicity was previously treated in conjunction with the 

z 

A 
19 3b ~ 4 3 c  ~,x33b 

21b .q "~la 

D 29a 5 17a 13a41a 

y x 

Fig. 4. The positions of all CSL boundaries in the asymmetric 
region for E-<49. The coordinates are defined by: x= 
(~r/4)v~- v~.~0 i - (~02 - ~oi)/x/~; y = (~02 - ~oi)/x/2; z = ~/2 - d~. 

orientation distribution function (ODF) (Bunge, 
1982; Hansen, Pospiech & Lucke, 1978), but the pres- 
ent paper is the first to treat the problem thoroughly 
for cubic misorientations. Identifying all such multi- 
plicities is a very important aspect in interpreting 
distribution functions of  the misorientation. 

§ 4 provides an important link with the present 
work to the geometrical theory of grain boundaries. 
Table 2 lists the locations for all CSL boundaries for 

- 49 in the new asymmetric domain. Further, their 
associated multiplicity have been identified. This 
table should provide an important bridge between 
theorists and experimentalists interested in the 
properties of individual boundaries and those inter- 
ested in measuring and describing their distributions 
in polycrystalline media. Clearly, both aspects are 
important in developing models for macroscopic 
behavior of  these materials. 
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Abstract 

The Gram-Charlier temperature factor formalism 
has been applied to a set of accurate low-tempera- 
ture data on bis(pyridine)(meso-tetraphenylpor- 
phinato)iron(II), and to a theoretical set of static 
structure factors on the hexaaquairon(lI) ion. The 
refinements are compared with the multipole treat- 
ment for atomic asphericity due to chemical bonding. 
In a treatment of the experimental data in which only 
the iron atom asphericity is considered, the 'thermal 
motion' formalism is as efficient as the multipole 
formalism in accounting for the observations. It is 
slightly less efficient when applied to the static theo- 
retical data, though model maps based on the two 
treatments are remarkably similar. A high-order 
Gram-Charlier refinement of the porphyrin data, fol- 
lowed by a multipole refinement of all data with the 
Gram-Charlier parameters initially fixed, and later 
varied, shows that simultaneous refinement of anhar- 
monic and aspherical effects is possible, though the 
resulting separation may not be accurate. A combined 
Gram-Charlier multipole refinement on the static 
data, however, leads to non-significant thermal par- 
ameters. It is concluded that the statistical Gram- 
Charlier formalism is remarkably successful in rep- 
resenting bonding effects in the valence charge density 
if these are not specifically accounted for in the scat- 
tering formalism. Statistical anharmonic thermal 
motion formalisms should only be used for X-ray 
data analysis in combination with a formalism 
accounting for the effect of bonding on the atomic 
charge density. 
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Introduction 

It is commonly assumed in crystallographic studies 
that thermal motion can be adequately described by 
a formalism based on a harmonic force field. The 
Fourier transform of the Gaussian probability distri- 
bution of harmonically vibrating atoms is the tem- 
perature factor component of the time-averaged 
atomic form factor first introduced by Cruickshank 
(1956). It has also been realized, however, that there 
exist not uncommon phenomena in which anhar- 
monic motion might be a significant effect, for 
example pseudorotation (Cremer & Pople, 1975), ring 
oscillations in biphenyl-type compounds (Rietveld, 
Maslen & Clews, 1970), anharmonic vibrations in 
alloys (Kontio & Stevens, 1982) and semiconductors 
(McIntyre, Moss & Barnea, 1980) and many others. 
Internal vibrations of bonds in molecules have a 
less dominant effect in crystallographic work, but 
evidence for their anharmonicity is abundantly pres- 
ent in spectroscopic data. Indeed, inclusion of anhar- 
monic covariant tensor coefficients has been reported 
to be essential in some structure determinations (e.g. 
Marsh & Abrahams, 1987; Zucker & Schulz, 1982; 
Johnson, 1969; Willis, 1969). Such anharmonicity 
leads to deviations from Gaussian shape, which may 
be represented by additional terms in the probability 
distribution function. Several algorithms for the 
anharmonic temperature factor have been proposed 
(see International Tables for X-ray Crystallography, 
1974; In terna tional Tables for Crystallography, 1983). 
For a number of reasons (Kuhs, 1983; Scheringer, 
1985) the preferred formalism is based on the three- 
dimensional Gram-Charlier (GC) expansion, in 
which the anharmonic terms are the zero and higher 
derivatives of a normal distribution (Kendal & Stuart, 
1958; Johnson, 1969). Its Fourier transform T(H) is 
a power-series expansion about the harmonic tem- 
perature factor To(H), with even and odd terms 
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